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ABSTRACT 

Let f be  a Lipschitz  m a p p i n g  of a separable  Banach  space X to a Banach  

space Y. We observe t h a t  the  set of  points  at  which f is differentiable in a 

spann ing  set  of  directions b u t  not  G~,teaux differentiable is a-di rect ional ly  

porous.  Since Borel a-direct ional ly  porous  sets ,  in addi t ion  to being first 

ca tegory sets,  are  null  in Aronsza jn ' s  (or, equivalently,  in Gauss ian)  sense, 

we ob ta in  a n  a l te rnat ive  proof  of  the  inf ini te-dimensional  general isat ion 

of R a d e m a c h e r ' s  T h e o r e m  (due to Aronsza jn)  on G&teaux differentiabil- 

i ty of  Lipschitz  mappings .  Be t t e r  u n d e r s t a nd ing  of a-direct ionai ly  porous  

sets  leads us to a new version of P ~ d e m a c h e r ' s  t heo rem in infinite d imen-  

sional spaces  which  we show to be  s t ronger  t hen  the  one ob ta ined  by 

Aronsza jn .  A more  detai led analysis  shows t ha t  (a s t ronger  version of) 

our  observat ion follows from a somewha t  technical  result  showing t h a t  

the  behaviour  of  the  slopes (f(x + t(u + v)) - f (x  + tv))/t as t --~ 0+  is in 

some sense independen t  of  v. In par t icular ,  th is  implies t ha t  in the  case 

of Lipschitz  real valued funct ions  the  upper  one-sided derivatives coincide 

wi th  the  derivatives defined by Michel and  Penot ,  except  for poin ts  of  a 

a-di rect ional ly  porous  set.  This  has  a n u m b e r  of  in teres t ing consequences  

for upper  and  lower directional derivatives.  For example ,  for all x C X ,  

except  those  which belong to a a-direct ional ly  porous  set,  t he  func t ion  

* T h e  s e c o n d - n a m e d  a u t h o r  w a s  s u p p o r t e d  b y  t h e  g r a n t s  G A C R  2 0 1 / 9 7 / 1 1 6 1 ,  
G A U K  1 6 0 / 1 9 9 9 ,  a n d  C E Z  J 1 3 / 9 8 1 1 3 2 0 0 0 0 7 .  

R e c e i v e d  A p r i l  3, 2000 
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v -+ ] ( x , v )  (the upper right derivative of f at x in the direction v) is 
convex. 

1. In troduct ion  

The simple fact that some exceptional sets which arise naturally in the study of 

(directional) differentiability of Lipschitz functions on separable Banach spaces 

are a-porous had been pointed out by the authors in several lectures, but we felt 

that  the corollaries were not strong enough to warrant a publication. (However, 

the corresponding main idea was used in [NZ].) Several years ago we noted that  

these exceptional sets are even a-directionally porous. This, we now believe, 

was an important observation, since Borel a-directionally porous sets are not 

only first category sets (as all a-porous sets are) but are also Aronszajn null (or, 

equivalently, Gaussian null). This was the motivation for the study of the struc- 

ture of a-directionally porous sets in [PZ], where we also state the result that the 

upper derivative of a real-valued Lipschitz function on a separable Banach space 

is a convex function of direction at all points except possibly those belonging to 

a a-directionally porous set. Recently, we noticed that an application of the no- 

tion of a-directional porosity gives, in addition to a 'simple' proof of Aronszajn's 

version of Rademacher's theorem, also several improvements of this theorem. We 

believe that  these results show that the notion of a-directional porosity is useful 

and have therefore decided to publish this account of the above observations. 

In the meantime, essentially the same main idea was used in [BC]. For example, 

the result on convexity of directional derivatives mentioned above is stated in 

[BC] (Theorem 5.2 and Remark 3.1) for the case of a Hilbert space X and proved 

in the finite-dimensional case. In [BC] one may also find a finite dimensional 

analogy of the result that have led us to the improvement of Aronszajn's theorem 

(Corollary 4.11) and the observation that  it gives one of the 'simple' proofs of 

Aronszajn's theorem. (However, as far as we can see, for the improvement the 

infinite dimensional version is necessary.) 

The paper is organised as follows. 

In Section 2 we prove that,  if f is a Lipschitz mapping of a separable Banach 

space to a Banach space Y, then the set of points at which f is differentiable in a 

spanning set of directions but  not G~teaux differentiable is a-directionally porous 

(Theorem 2); since this suffices for applications in Section 4, we give a separate 

proof. We then give an abstract version of this statement (Lemma 3) which 
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shows that  the behaviour of the slopes ( f ( x  + t(u + v)) - f ( x  + tv)) / t  as t -+ 0+ 

is in some sense independent of v. It  implies, on one side, that  Theorem 2 holds 

even with one-sided derivatives and, on the other side, a result which may be 

considered as a vector-valued analogue of the results of Section 3. The following 

sections are independent of each other. Section 3 deals with real-valued Lipschitz 

functions only and points out that  Lemma 3 immediately implies that  ordinary 

and Michel-Penot upper directional derivatives coincide except for points of a a- 

directionally porous set. This and known properties of Michel-Penot derivatives 

then imply the convexity of directional derivatives mentioned above, a certain 

symmetry  result (Theorem 8(iii)) which generalises a known result for Lipschitz 

functions of one variable, and an improvement of known results on existence of 

intermediate derivatives. (The last result is stated in [BC] for a Hilbert space 

and proved in the finite-dimensional case.) 

In Section 4 we first discuss a 'simple' proof of Aronszajn's theorem which, if 

we wish so, may not use Fubini's theorem and so need not distinguish between 

finite and infinite dimensional spaces. (However, only the proof using Fubini's 

theorem may be called simple; otherwise we use a somewhat less trivial result 

of [PZ].) We then prove an abstract  s tatement (Theorem 10) whose weaker form 

says that  a G~teaux differentiability result holds with exceptional sets belonging 

to some a-ideal if and only if directional differentiability result does. After a 

brief discussion of the notions of a-ideals suitable for differentiabifity results we 

prove the main result of this section, Theorem 12, which improves Aronszajn's 

version of Rademacher 's  theorem. Finally, we give examples showing that  this is 

a genuine improvement. 

In the last Section 5 we briefly discuss the problem which sets have to belong 

to exceptional sets for the Rademacher theorem. 

In the rest of Introduction we give the basic notation and definitions. Defini- 

tions particular to either Section 2 or 3 are given there. 

In the following X will be a real Banach space. We say that  a mapping of an 

open subset G c X to a Banach space Y is Lipschitz, if the number 

Lip(f) :-- sup { f(x)ll :x, ye  e }  

is finite. 

If  f is a mapping from X to a Banach space Y and x, v E X,  then we consider 

the directional derivative i f (x ,  v) and the one-sided (right) directional derivative 
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ff+(x, v) defined by 

I t (x ,  v) = lim ] (x  + tv) - f (x )  
t--+o t 

f~ (x , v )  : lim f ( x  + t v ) -  f (x )  
' t -+O+ t 

We will often mention the notion of sets null in Aronszajn's sense. By a remark- 

able result of Csbrnyei [C] (see also [BL]) these sets coincide with Mankiewicz's 

([Ma]) "cube null sets" as well as with Gaussian null sets (cf. [Ph]), and for all 

but Section 4 any of these notions is sufficient. The results of Section 4, however, 

develop Aronszajn's original idea, and we will therefore speak about Aronszajn 

null sets throughout the paper. 

Now we recall the definitions of "porosity notions" that  we need and present 

basic comments on them. Further information can be found in the survey article 

[Z2]. Of course, the notion of porosity can be (and has been) defined in arbi trary 

metric spaces, but since we work in Banach spaces, we will not do it. The notion 

of directional porosity needs additional structure and could be defined on suitable 

manifolds; again, we do not see any advantage in presenting a general definition 

without application. We use the notation B(x,  r) for the open ball with center x 

and radius r. 

Definition: Let X be a Banach space, M C X and a E X. Then we say that: 

(i) M is porous at a if there exists c > 0 such that  for each e > 0 there exist 

b E X and r > 0 such that  p(a,b) < e, M M B(b,r)  = 0 and r > cp(a,b). 

(ii) M is porous at a in direction v if the b E X from (i) verifying the porosity 

of M at a can be always found in the form b = a + tv, where t >_ 0. We 

say tha t  M is directionally porous at  a if there exists v E X such that  M 

is porous at a in direction v. 

(iii) M is porous (porous in direction v, directionally porous) if M is porous 

(porous in direction v, directionally porous) at each of its points. 

(iv) M is a-porous (a-porous in direction v, a-directionally porous) if it is a 

countable union of porous sets (sets porous in direction v, directionally 

porous sets). 

Clearly every directionally porous (a-directionally porous) set is also porous 

(a-porous) and it is an easy well-known fact that  these concepts coincide in 

finite-dimensional spaces. 

The notion of a-porosity was introduced by Dolzhenko [D] and since then it has 

been used and investigated by many authors; in some applicaticnas other variants 

of porosity notions are natural  (cf. [Z2]). 
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Every a-porous set is clearly a first category set and the Lebesgue density 

theorem easily implies that every a-porous subset of R'* is of Lebesgue mea- 

sure zero. Unfortunately, a a-porous subset of an infinite-dimensional separable 

Banach space need not be null in any "natural measure sense". In fact, in [PT] 

an example of an F~ a-porous subset S of a separable Hilbert space H is con- 

structed in such a way that  the complement C := H \ S intersects any line in 

a set of null one-dimensional Lebesgue measure (on this line) and therefore C is 

null in Aronszajn's sense. As we already noted, by [C] this is equivalent to C 

being null in Gaussian or cube sense. In particular, G is also of Haar measure 

zero in Christensen sense (see [Ch] or [BL, Chapter 6] for the definition). 

On the other hand, every Borel a-directionally porous subset of a separable 

Banach space X is null in Aronszajn's sense. This fact is an easy consequence of 

Aronszajn's theorem, which says that  every Lipschitz function on X is G~teaux 

differentiable at all points except a set which is Aronszajn null, and the easy 

observation (cf. [Z1], p. 299) that a set E C X is directionally porous at a point 

a E E if and only if the distance function d(x) := dist(x, E) is not G£teaux 

differentiable at a. An independent proof of the same fact is contained in [PZ], 

where also some other facts concerning a-directionally porous sets can be found. 

Namely, the following result is proved in [PZ] (Theorem 4.10 and Remark 4.11). 

THEOREM 1: Let X be a separable normed linear space and let (vn)~ be a 

complete sequence in X (i.e., span{v1,. . .} = X) .  Let A C X be a Borel a- 

directionally porous set. Then we can write A = [.J~=l (A + U A~ ), where A +, A~ 

are Borel sets a-porous in directions v n , - v n ,  respectively. 

For yet another argument showing that Boret a-directionally porous sets are 

Aronszajn null see the proof of the inclusion C* C A of Proposition 13. 

We finish with an important remark concerning a permanence property of 

a-directionally porous sets. It will be used to prove Corollary 6. 

Remark 1: Let F: X --+ Y be a bilipschitz bijection between Banach spaces 

X, Y. It is obvious that then F ( M )  is a-porous whenever M C X is a-porous. 

If, moreover, F has all one-sided directional derivatives at all points (in particular, 

if F is G£teaux smooth), then it is easy to observe that F ( M )  is a-directionally 

porous (and therefore also Aronszajn null) whenever M is a-directionally porous. 

2. Lipsehitz mappings 

The starting point of our investigation is the following statement. It can be 

easily deduced from Lemma 3, but because of its independent interest (see its 
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application in Section 4), we give a separate proof. 

THEOREM 2: Let f be a Lipschitz mapping of an open subset G of a separable 

Banach space X to a Banach space Y. Then the following implication holds at 

each point x • X except a a-directionally porous set: 

I f  the directional derivative f l (x ,  u) exists in all directions u from a set Ux c X 

whose linear span is dense in X, then f is G~teaux differentiable at  x. 

Proof: Since the closed linear span of the range f (G)  is clearly separable, we may 

suppose without any loss of generality that  Y is separable. We may also suppose 

Lip(f )  • 0. For any u, v • X,  y, z • Y, ¢, 5 > 0 denote by A(u, v; y, z; ¢, 5) the 

set of those x • G such that  

(i) IIf(x + tu) - f ( x )  - tyll < ~ltl and IIf(x + tv) - f ( x )  - tzll <_ cIt I for all 

Itl < 5 and 

(ii) IIf(x + t (u  + v)) - f ( x )  - t (y  + z)ll > 3eltl occurs for arbitrarily small Itl- 

To show that  A(u, v; y, z; ~, 5) is directionally porous, it suffices to prove that  

B ( x  + tv, r) n A(u, v; y, z; ~, 5) = O whenever z • A(u,  v; y, z; ~, 5), It[ < 5 has 

the property from (ii) and r = cl t l / (2Lip( f ) ) .  For this note that  for every 

q • B ( x + t v ,  r), 

Ilf(q + tu)  - f ( q )  - tyll ~l l f (x  + t (u  + v))  - f ( x  + tv)  - tyl[ 

- 2 Lip(f)l lq - (x + tv)[I 

> l l f (x  + t (u  + v))  - f ( x )  - t ( y  + z)ll 

- [ I f ( x  + t v )  - f ( x )  - t z l l  - c l t l  

>elt[, 

hence q ¢ A(u, v; y, z; e, 5) by (i), as required. 

Define A as the union of all the sets A(u, v; y, z; e, 5) obtained by choosing 

u, v from a dense countable subset U of X,  y, z from a dense countable subset 

V of Y, and rational numbers c, 5 > 0. Then A is a-directionally porous. For 

any x C X \ A, any u0, vo E X such that  f ' ( x ,  uo) and f ' ( x ,  vo) exist, and any 

rational e > 0 we find rational 5 > 0 such that  [If (x + tuo) - f  (x) - t f '  (x, uo)I1 <- 

eItl/2 and Ilf(x + tvo) - f ( x )  - t f ' ( x ,  vo)ll < eltl/2 for all Itl < 5, and we pick 

y , z  e Y and u,v  • V such that  ]]y- f ' ( x ,  uo)II < ¢/4, t l z -  f ' ( x ,  vo)]] < e/4, 
] ] u -  u011 < ¢ /4L ip ( f )  and ]Iv -v0[]  < e /4L ip ( f ) .  Observe that  (i) holds since, 
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for example, 

IIf(x + tu) - f ( x )  - tYll _<llf(x + tuo) - f ( x )  - t f ' ( x ,  uo)ll 

+ IIf(x + tu)  - f ( x  + tuo)ll + Ilty - t f ' ( x ,  uo)ll 

<sllt l /2 + ~lltl/2 + dl t l /4  = cltl 

for all Itl < 5. Since x ~ A(u ,  v; y, z;e, 5) and (i) holds, we obtain that,  for 

all sufficiently small Itl > 0, Ilf(x + t (u  + v))  - f ( x )  - t ( y  + z)l[ ___ 3clt[ and 

consequently also IIf(x + t (uo + vo)) - f ( x )  - t ( f ' ( x ,  uo) + f ' ( x ,  vo))ll ___ IIf(x + 
t (u  + v) ) - f (x) - t (y  + z)[ I + eltl < 4eltl. Hence f ' ( x ,  uo + Vo) exists and is equal 

to f ' ( x ,  uo) + f ' ( x ,  vo). Since f ' ( x ,  suo) = s f ' ( x ,  uo) for all s E R, this shows that  

the set of directions of differentiability of f at any point x E X \ A is a linear 

space. Since this set is also closed (see Lemma 11 for a proof of this well-known 

fact), the statement follows. I 

We observe that  the proof of Theorem 2 gives a stronger statement,  namely 

that  the set of directions of differentiability of f at a point x forms a closed linear 

subspace of X,  with the exception of a a-directionally porous set of points x. We 

may ask if a similar s tatement holds for one-sided differentiability and we may 

also ask if results of this type carry in some natural  sense over to the upper and 

lower derivatives. Instead of refining the proof, we give the following somewhat 

technical s tatement which, as we will see, easily implies such results. 

LEMMA 3: Suppose that  f is a Lipschitz mapping of an open subset G of  a 

separable Banach space X to a Banach space Y and that ~: Y -+ R is Lipschitz. 

Then there is a a-directionally porous set A C X such that  for every x E X \ A 

and u E X the set of  the l imit  points, as t -~ 0+, of  the function 

t ~  ~(f(x_ + t(u + v))t - f(x + tv)) 

does not  depend on v E X .  

Proof: We can suppose Lip((I)) ¢ 0 and Lip(f )  ¢ 0. Note also that  the above 

function has only finite limit points since it is clearly bounded for each u, v E X.  

Now fix directions u, v, w E X,  positive numbers c~, 5 and real (open) intervals 

I ,  J such that  the a-neighbourhood of I is contained in J ,  and consider the set 

M of those x E G such that  
(i) d)(f(x+t(u+v~ )- l (x+tv))  ¢ J for all 0 < t < 5 and 

(ii) (~(f(xTt(u-t-w))-f(x-l-tw))t E I occurs for arbitrarily small t > 0. 

To show that  M is porous in the direction w - v, it clearly suffices to prove that  

B ( x  + t (w - v), r) M M = 0 whenever 5 > t > 0 has the property from (ii) and 
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r = at/(2Lip(a))Lip(f)). For this note that  for every z E B(x + t ( w -  v),r) 
the distance of (I) (f(z+t(uTv~)-f(z+tv)) and (I) (f(x+t(u+w~)-f(x+tw)) does not 

exceed 2Lip((I))Lip(f) z-(x+i(w-v)) < a, so • (f(z+t(u+v~)-f(z+tv)) E J and 

hence (i) implies that  z ~ M as required. 

Define A as the union of all the sets M obtained by choosing u, v, w from a dense 

countable subset V of X,  rational numbers a,  5 and intervals I ,  J with rational 

end-points. Then A is a-directionally porous. Suppose that  x E X,  Uo, v0, wo E 

X and that  c E R is a limit point of the function t --~ • (f(x+t(u°+w°t))-f(~+t*°°)) 
I ,  / 

t -+ 0+ but not of the function t -~ • (l(x+t(~o+vo,))-l(x+t~o)). Then a s  w e  can 

clearly find rational numbers a, b, a ,  5 such that  a < c < b and 

O( f (x  + t(uo + vo)) - f ( x  + tvo)~ ~ (a_  3a, a + 3a) for a l l 0 < t < 5 .  
\ t / 

If  we choose u, v, w E V so that  

max(flu - Uol{, {Iv - volI, Ilw - wolf) < a/3 Lip(f) Lip(4~), 

and put I := (a - a ,  b + a) ,  J :-- (a - 2c~, b + 2a), then (i) and (ii) hold, which 

shows that  x E A as claimed by the Lemma. I 

Remark  2: Several slightly more general versions of Lemma 3 may be obtained 

by obvious modifications of its proof: As the completeness of X and Y has not 

been used, the Lemma holds for normed linear spaces X, Y. Also, f may be 

assumed to be locally Lipschitz instead of Lipschitz. The target space of (I) could 

be any separable metric space instead of R. Finally one can show a version of the 

Lemma in a non-separable X with directions u, v restricted to a fixed separable 

subspace. 

I t  is also interesting to note that  by using the statement with v replaced by 

-(u-t-v) one obtains that  the function from the Lemma has the same limit points 

for t -+ O+ and for t -+ 0 - .  

If Y is separable and we use Lemma 3 with the functions (I)k(z) = Itz - y~[[, 

where Yk are dense in Y, we immediately get 

COROLLARY 4: Suppose that  f is a Lipschitz mapping of an open subset G of 
a separable Banach space X to a separable Banach space Y. Then there is a 

a-direetionally porous set A C G such that for every x E G \ A, u, v E X and 

y E Y ,  

f ( x  +tu)--  f(x) _ y  = llmlnf f ( x - b t ( u T v ) ) - -  f ( x  +tv) _ l~m ii~f Y 
t ~':;d7 t 
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and 

limsuPt_,o+ f ( x  + t(u + v))t - f ( x  + tV) - Y =limsuPt_,0+ f ( x  + tu)t - f (X)  - Y . 

We use this statement to deduce the following natural generalisation of 

Theorem 2. 

THEOREM 5: Let f be a Lipschitz mapping of an open subset G of a separable 
Banach space X to a Banach space Y. Then there is a a-directionally porous set 

A C G such that for every x c G \ A the set Ux of those directions u • X at 

which the (one-sided) derivative f~  (x, u) exists is a closed linear subspace of X .  

Moreover, the mapping u -~ f ~ ( x , u )  is linear on U~. 

Proof: Since the closed linear span of the range f (G)  is clearly separable, we may 

suppose without any loss of generality that Y is a separable space. We show that 

the statement holds for any x C X \ A, where A is the set from Corollary 4. Since 

f is Lipschitz, the set Ux is closed and the mapping u ~ f~_ (x, u) is continuous 

(even Lipschitz) on Ux. (These well-known facts follow from the "one-sided" 

analogue of Lemma 11.) 

Hence it suffices to show that f ~ ( x , - u )  = - f ~ ( x , u )  and f ~ ( x , u  + v) = 

f ~ ( x , u )  + f ; ( x , v )  for every u • Uz, v • gz.  

If f~_ (x, u) exists, we use the second inequality of Corollary 4 with v = - u  and 

y = f~  (x, u) to infer that 

limsup f ( x )  - f ( x  - tu) 
t = o .  

Hence f ~ ( x , - u )  exists and f ~ ( x , - u )  = - f ~ ( x ,  u). 
If f~(x ,  u) and f~(x ,  v) exist, the second inequality of Corollary 4 with y = 

f~(x ,  u) gives that  

1 f ( x  + t(u + v)) -- f ( x  + tv) 
imsup t 

Hence 

lim f ( x  + t(u + v)) - f ( x )  
t-+O+ t 

- u )  = o .  

= lim f ( x  + t(u + v)) - f ( x  + tv) 
t--tO+ t 

+ lim f ( x + t v ) - f ( x )  
t-}O+ t 

= f + ( x , u ) +  f+(x ,v) ,  
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as required. | 

As an example of application of Theorem 5, we use it, together with the perma- 

nency property of a-directionally porous sets mentioned in Remark 1, to obtain 

the following result. (See Section 4 for definition of Aronszajn null sets, and note 

that simple examples [BL, Example 6.35] show that  a bilipschitz image of an 

Aronszajn null set need not be Aronszajn null.) 

COROLLARY 6: Let X, Y be separable Banach spaces, Z be a Banach space with 

the Radon-Nikodym property and let f: X -~ Z be a Lipschitz mapping. Denote 

by Nf  the set of all points at which f is not G~teaux differentiable. Let further 

F: X -~ Y be a bilipschitz mapping having all one-sided directional derivatives 

at all points. Then F(NI)  is Aronszajn null. 

Proo~ Denote by Nf  the set of all points x C X at which f has not the one- 

sided derivative in a direction vx. Observe that Nf  \ NI is a-directionally porous 

by Theorem 5 and therefore (cf. Remark 1) also F ( N  I \ IYf) is a-directionally 

porous (and consequently also Aronszajn null). Let N 9 be the set of all Ggteaux 

non-differentiability points of the Lipschitz function g := f o F -1. Now observe 

that F(Nf )  C Ng U F(N f  \ Nf) .  Indeed, otherwise there exists a point x C/~-f 

such that F(x) q~ N 9. But this implies that the one-sided derivative in the 

direction vx of f = g o F at x exists, which is a contradiction. Thus F(Nf )  is 

Aronszajn null. | 

Remark 3: The statement holds, with the same proof, also in the case when F 

has all one-sided directional derivatives at all points except a set S such that F(S)  

is Aronszajn null. It is not difficult to see that each set S which is a countable 

union of sets with finite Hausdorff dimension has this property. 

3. Ordinary and M i c h e l - P e n o t  upper  direct ional  derivatives 

In this section we show that our results easily apply to the problem of coinci- 

dence of ordinary and Michel-Penot upper directional derivatives of Lipschitz 

real-valued functions and so also to the problem of existence of intermediate 

derivatives. These notions are defined for real-valued functions only; in this sec- 

tion we therefore consider only such functions. 

If f is a real-valued function on a Banach space X, then we define the upper 

and lower (one-sided) directional derivatives f ( x ,  v) and f (x ,  v) by 

](x, v) -- l imsup f ( x  + tv) - f (x )  and f (x ,  v) = l iminf f ( x  + tv) - f (x )  
t - + O +  t - -  t - + O +  t 
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We also consider the (upper) Clarke derivative of f at x in the direction v 

f ° ( x ,  v) = sup { limsup 
n - - ~ o o  

f(y  + tnv) - f (yn)  I 
: Yn --~ x, t~ "% O~ 

tn ) 

and the Michel-Penot (upper) derivative ([MPI] and [MP2], where it is called a 

radial strict derivative) of f at x in the direction v 

Clearly 

(1) 

{ 1 } 
f<>(x,v) :---- sup limsup ~ ( f ( x  q- tn + tv) - f ( x  q- tu) ) . 

u E X  t-~O+ 

- f (x ,v)  ~ f<>(x,v) ~ f ° ( x , v )  

and 

(2) -f_(x, v) -- ( - f ) ( x ,  v). 

The Michel-Penot directional derivative has the following remarkable proper- 

ties (see [MP2], Propositions 1.2 and 1.7). 

be a Banach space, x E X and let f be a Lipschitz THEOREM MP: Let  X 

function on X .  Then 

(a) The function 

v -+ f<>(x, v) 

is convex and posit ively homogeneous on X .  

(b) The  equality f * ( x , - v )  = (-f)<>(x, v) holds for each direction v C X .  

(c) I f  f is Gdteaux differentiable at x then f<>(x, v) ~- f ' ( x ,  v) = -](x, v) for 

each v E X .  

Note that  analogues of (a) and (b) for the Clarke directional derivative also 
hold, but that of (c) does not. 

Giles and Sciffer [GS1] proved that, for a Lipschitz function on a separable 

Banach space, at all points x C X except those which belong to a first category 

set (i.e., generically), the equality 

7(x,v)=f°(x,v) 

holds for each direction v E X. It is well-known that it is not possible to assert 
that  this exceptional set is null in Aronszajn's sense (even in the case X = R). 
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The just mentioned result of [GS1] and (1) immediately imply that  for a Lip- 

schitz function on a separable Banach space, at all points x E X except those 

which belong to a first category set A, the equality 

(3) / ( x ,  v) = f<>(x, v) 

holds for each v E X. 

Moreover, Aronszajn's infinite-dimensional Rademacher's theorem ([A]) and 

Theorem MP, (c) immediately imply that the exceptional set A from the above 

statement is Aronszajn null. As an immediate consequence of Lemma 3 we point 

out that the following joint strengthening of both these facts concerning the size 

of the set where (3) holds. 

THEOREM 7: Let G be an open subset of a separable Banach space X and let f be 

a real Lipschitz function on G. Then, at all points x E G except a a-directionally 

porous set, 

](X, V) : I~(X,  V) 

holds for each direction v E X .  

Proof." It is sufficient to apply Lemma 3 with Y = ]R and ~(y)  = y. I 

This result, equation (2) and the properties of Michel-Penot derivatives stated 

in Theorem MP directly imply several interesting facts concerning upper and 

lower directional derivatives. 

THEOREM 8: Let X be a separable Banach space and let f be a real Lipschitz 

function on X .  Then there exists a a-directionally porous set A C X such that, 

for all x E X \ A, the following assertions hold. 

(i) The function v --+ f ( x ,  v) is convex. 

(ii) The function v --+ f_(x, v) is concave. 

(iii) The equality _f(x, v) = - ] ( x ,  - v )  holds for each v E X. 

Note that the symmetric behaviour of Lipschitz functions given by condition 

(iii) in the case X = R is well-known; it is an immediate consequence of a result 

of [EH] on Dini derivatives of monotone functions, see also [T], Example 66.2 and 

Theorem 73.1. 

Theorem 8 (except (iii)) is stated in [BC] in the case X is Hilbert (and proved 

in the finite-dimensional case) and in [PZ], p. 297 in the general case. Its Baire 

category version (in which the exceptional set A is a only first category set) 

follows, of course, directly from the result of Giles and Sciffer mentioned above. 
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As an immediate consequence of Theorem 8 we obtain a strengthening of 

existence results for intermediate derivatives in separable spaces. Following [FP] 

we say that  x* E X* is an intermediate derivative of a function f :  X -+ R at a 

point x E X if 

f (x ,  v) _< (x*, v) < f ( x ,  v) for every v E X. 

Since f clearly has the intermediate derivative at all points at which it is G~teaux 

differentiable, the infinite-dimensional Rademacher 's  theorem [A] implies that  

every (locally) Lipschitz function on a separable space X has the intermediate 

derivative at all points except a set P which is null in Aronszajn's  sense. This 

also implies that  P is of the first category, since it is not difficult to prove that  in 

this case the set of points of intermediate differentiability of a Lipschitz function 

is G~. Much stronger information is contained in the following result, which is 

in the case of a Hilbert space X stated also in [BC]. 

THEOREM 9: Let f be a Lipschitz function on a separable Banach space X .  

Then the intermediate derivative of  f exists at all points x E X except those 

which belong to a a-directionally porous set. 

Proof: Use Theorem 8 to choose a a-directionally porous set P c X such that,  

for each x e X \ P ,  _f(x,v) = - ] ( x , - v )  for each v C X and the function 

v -+ f ( x ,  v) is convex. Let x C X \ P be given. Since the function v --+ ] (x ,  v) 

is convex, continuous and positively homogeneous, the Hahn-Banach theorem 

provides us with x* E X* such that  (x*, v) < ] ( x ,  v) for every v E X.  Since 

(x*, v) = - ( x * ,  - v )  > -](x, = 

we see that  x* is an intermediate derivative of f at x. | 

We should point out that  this result goes in somewhat different direction than 

those of [FP]. These authors introduced the intermediate derivatives to study 

(mainly) the non-separable situation; their main result shows that  the intermedi- 

ate derivative of a Lipschitz real-valued function on X exists at all points except 

a first category set provided that  X is a subspace of a space Y that  contains a 

dense continuous image of an Asplund space. This condition holds if X is sep- 

arable, but,  as we have seen before Theorem 9, in this case the result is more 

straightforward. Another intermediate differentiability result, with a "uniform 

intermediate derivative" and a "a-globally porous" exceptional set was recently 

obtained for (possibly non-separable) superreflexive Banach spaces in [Z3] as an 
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easy consequence of a rather deep result of [BJLPS]. Note, however, that the 

notions of a-directional porosity and "a-global porosity" are incomparable, and 

so are the results of [Z3] and Theorem 9. 

4. Stronger versions of  Rademacher's  theorem in infinite-dimensional 
spaces 

In this section we apply the notion of a-directional porosity to improve the known 

results on the size of sets of points of Gfiteaux non-differentiability of Lipschitz 

mappings. The proofs are self-contained except for the use of Theorem 1 and for 

the proofs of Borel measurability of this set; the former may be found in [PZ], 

and the latter in any paper containing a version of Rademacher's theorem in 

infinite-dimensional spaces, for example [A] or [BL, Proof  of Theorem 6.42]. We 

start by pointing out that the statement 

(*) Borel a-directionally porous sets are Aronszajn null 

together with Theorem 2 provides us with a simple proof of Aronszajn's version 

of Rademacher's theorem for which we do not have to distinguish between finite 

and infinite dimensional spaces: 

A Lipschitz mapping of a separable Banach space X to a Banach space Y 

with the Radon-Nikodym property is Gdteaux differentiable except at points of an 

Aronszajn null set. 
Indeed, for any spanning set ek E X we have (by one of the definitions of the 

Radon-Nikodym property) that the set Ek = {x E X: f ' (x ,  ek) doesn't exist} is 

null on every line in the direction ek; it is also easy to see that it is Borel (cf. 

Lemma 11 below). By Theorem 2, f is Gfiteaux differentiable except at points 

of A U Uk Ek, where A is a Borel a-directionally porous set. Since by (*), A is 

Aronszajn null, the statement follows. 

The needed fact (*) immediately follows from the (non-trivial) Theorem 1; 

note that  this proof does not use Fubini's theorem at all. A simpler proof of 

(*) (without using, of course, Aronszajn's theorem) may be obtained by the 

argument used to show that  g* c .4 (see the proof of Proposition 13); this is 

based on a lemma of Aronszajn, which is an easy consequence of Fubini's theorem. 

Of course, ( .)  also follows directly from the inclusion g* C .4. 

In general terms, our goal may be described as an at tempt to define a Borel a- 

ideal A r of subsets of X (i.e., a hereditary family of Borel subsets of X closed under 

countable unions), as small as possible, for which the differentiability statement 

holds. The above approach naturally leads to the following statement saying 
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roughly that the G£teaux differentiability result holds for Af provided that the 

directional differentiability result does. 

THEOREM 10: Suppose that X ,  Y are Banach spaces, X separable. Then for 
every Lipschitz mapping f of an open subset G of X to Y and every complete 
sequence (Vn) in X the set 

{x E G: f is not G~teaux diferentiable at x} 

belongs to the Bore1 a-ideal generated by the sets of the form 

{x e G: f ' (x ,  vn) does not exist} and {x • X: h'(x, v,~) does not exist}, 

where h: X -+ R is Lipschitz. 

Proof  The statement requires us to show that the set N of those x C G at which 

f is not G~teaux differentiable but f ' (x ,  vn) exists for all n belongs to the a-ideal 

described above. By Theorem 2, N is a-directionally porous, so by Theorem 1 

we can write g = [Jn~=l(N + U N~) ,  where N + , N ~  are Borel sets a-porous 

in directions v, , , -v, , ,  respectively. Let N + n,k,Nn,,k be sets porous in directions 

v~, -vn ,  respectively, such that N + -- (_Jk~__l N+n,k and N~ -- [Jk~__l N~, k. Defining 

~n,k(x) dist(x, + = N~n,k) and Cn,k(x) = dist(x,N~,k), we obtain Lipschitz real- 

valued functions on X such that N + {x X: n,k C C ~ , k  ( X, Vn ) does not exist} and 

N~, k C {x E X: ¢' ,~,k(x, v~) does not exist}, which gives the statement. | 

Remark 4: If we are satisfied with a weaker result, namely that the set of non- 

differentiability points of f belongs to the Borel a-ideal generated by the sets of 

the form {x e G: f ' (x ,  v) does not exist} and {x e X: h'(x, v) does not exist}, 

where h: X --+ R is Lipschitz, then we may restate the above proof without 

recourse to Theorem 1, since the fact that  every Borel directionally porous set 

belongs to this a-ideal is straightforward. 

We now turn our attention to definitions of various classes suitable for showing 

G£teaux differentiability results. The basic idea behind these definitions is as 

follows: First, a notion of sets "small in a direction v" is defined. Second, one of 

the two possibilities is chosen: A weaker one defines a set to be small if it can be 

written as a countable union of sets each of which is small in some direction, or 

a stronger one which defines a set to be small if for every complete sequence (Vn) 
in X it can be written as a countable union of sets Nn such that Nn is small in 

direction v~. There are two exceptions to this construction of which we are aware. 

The first are Christensen's Haar null sets [Ch], which, however, form a rather 
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vast class of sets and contain all the classes that we define; they are therefore not 

a suitable candidate for the smallest a-ideal for which a differentiability result 

holds. The second are very recent new null sets of Lindenstrauss and Preiss; they 

are also not a suitable candidate for the smallest a-ideal for which a G~teaux 

differentiability result holds since they contain some very large sets. In fact, 

every continuous convex function on any space with separable dual is Fr~chet 

differentiable everywhere except a null set in this sense; by the result of [MM] 

(see [M] for a generalisation) the set of points of Frdchet differentiability may 

be Aronszajn null, and so the 'new' null sets may have a complement which is 

Aronszajn null. It is not clear if these null sets contain any class defined by 

our approach (in particular, the class 4) ;  if not, then more optimal versions of 

differentiability results have to count with them. We start by describing three 

notions of smallness in a direction; the first of them is the one used by Aronszajn 

in [A]. 

Definition: Let X be a separable Banach space and 0 ¢ v E X be given. We 

define the following classes of sets: 

(i) A ( v )  is the system of all Borel sets B C X such that B N (a + Rv) is 

Lebesgue null on each line a + Rv, a E X. 

(ii) A* (v, 6) is the system of all Borel sets B C X such that  B E A ( w )  for each 

w such that IIw - vii < 6, and ~4*(v) is the system of all sets B such that  

B = Uk=l Bk, where Bk • A*(v ,  ek) for some 6k > 0. 

(iii) A(v,6) is the system of all Borel sets B C X such that  { t :  ~(t) • B} is 

Lebesgue null whenever ~: R -+ X is such that  the function t --~ ~( t)  - tv 

has Lipschitz constant at most 6, and .A(v) is the system of all sets B such 

that  B = Uk=l°° Bk,  where Bk • ~(v ,  6k) for some 6k > 0. 

Remark 5: The property of ~ from the above definition is clearly equivalent to 

the condition that  

~(s)  - ~(t)- _ v <_6 for s e t .  
8 

This condition is clearly satisfied if ~ is Lipschitz and lid'(t) - vii <_ 6 for almost 

all t • R; moreover, these two conditions are equivalent provided that X has the 

Radon-Nikodym property. 

Further, a simple extension argument shows that if we consider ~o defined on 

an arbitrary closed interval, or even on an arbitrary set (instead of on the whole 

R), we obtain the same notion of ~(v,  6). 

Clearly, .A(v) D .4* (v) D .~(v). We note that .4(~v) =- j4(v), .4* ()~v) -- .4* (v), 

and A(Av) = .~(v) for ~ ¢ 0; the only statement that  may require an argument 
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is the last one, which follows by considering the function t --+ qo(At). 

The definition of the three classes of negligible sets corresponding to the above 

notions should now be clear. We use the letter C for the weaker definition (since 

the basic observation of Christensen [Ch] implies that C is non-trivial) and ,4 for 

the stronger definition, since its idea is due to Aronszajn and ~4 is the class of 

Aronszajn null sets. 

Definition: Let X be a separable Banach space. 

(i) We define C, C* and C, respectively, as the system of those subsets B of 

X that  can be written as B = [-Jn=l°~ Bn, where each B~ belongs to .A(vn), 

fl,*(v,~) or A(vn), respectively, for some Vn. 

(ii) We define .A, A* and 4 ,  respectively, as the system of those subsets B of 

X that  can be, for every given complete sequence vn in X,  written as B = 

B [.J~=l n, where each Bn belongs to ¢4(vn), .A*(v,~) or J[(vn), respectively. 

Remark 6: The fact that (r-porous subsets of R are Lebesgue null immediately 

implies that each Borel set which is a-directionally porous in a direction v (or - v )  

belongs to A(v).  Therefore Theorem 1 implies that  each Borel a-directionally 

porous set belongs to .A (i.e. is Aronszajn null); this is what we have used in 

the proof of Aronszajn's theorem in the beginning of this section. By a slightly 

more careful argument one may show directly that  each Borel set B which is a- 

directionally porous in a direction v (or - v )  belongs to ,4* (v) and even to J[(v). 

(Indirectly, this follows from Theorem 12.) For this one would write (cf. [PZ]) 

B = (.J,~--1 B,~ where Bn are Borel sets c,~-porous in the direction v (or - v )  and, 

to show that  B,~ E A*(v, E), note that every line in direction close to v meets Bn 

in a porous set, so in a set of measure zero. To show that  Bn E .~(v, ~) one would 

replace this argument by noting that  for any ~ for which the Lipschitz constant 

of t -+ ~(t) - tv is small enough the set {t : ~(t) E Bn} is porous in R. 

Using these remarks one may prove Theorem 12 or its weaker version for ~4" 

without recourse to Theorem 10. 

The first three simple statements of the following Lemma are often used to de- 

duce Borel measurability of sets defined using derivatives. A simple modification 

of the proof of Theorem 12 would establish that they are sufficient to show our 

differentiability results for the class A*. The (also simple) statement (iv) is used 

to prove Theorem 12 in its full strength. 

LEMMA 11: Let f be a Lipschitz mapping of an open subset G ofa  Banach space 
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X to a Banach space Y.  For x E G and v C X denote the expression 

lim sup (1[ f ( x  + tv) - f ( x )  _ f ( x  + sv) - f ( x )  : 0 < Itt, 14 < ~} 
e--+0+ t II t S 

by O(f ,  x, v). Then 

(i) f '(x,  v) e×ists if and only if O(S, x, v) = O. 
(ii) g(x) := O(f,  x, v) is a Bore1 measurable function on G, for each v E X .  

(iii) h(v) := O(f,  x, v) is Lipsehitz on X ,  for each x C G. 
(iv) I f  ~: ]~ -+ X ,  r E • and the mapping ¢: t --+ qo(t) - tv has Lipschitz 

constant strictly less than O(f ,  ~(r),  v)/4 Lip(S), then the mapping f o 

is not differentiable at r. 

Proof: The statement (i) is obvious, (ii) follows easily from the fact that, in the 
definition of O(f,  x, v), it is clearly sufficient to consider ¢ of the form E = 1/n, n C 

N and rational t, s, and for (iii) we simply estimate [h(u)-h(v)[ _< 2 Lip(f)[iu-v[[. 

To prove (iv), denote x = ~o(r), find, for any given ~ > 0, 0 < [tl, Is I < c such 

that 
f ( x  + t t ) -  f ( x )  _ f ( x  + sv_)s - f ( x )  > 3 0 ( f , x , v ) / 4  

and estimate 

D : =  f ° ~ ( r + t ) - f ° q ° ( r ) -  f o q o ( r + s ) - f o q o ( r )  
t s 

>_ f ( x  + t t )  - f ( x )  _ f ( x  + sv)s - f ( x )  _ f ( x + t v ) - t f ( ~ ( r + t ) )  

_ f ( x  + sv) -sf(qo(r + s)) . 

Since 

f(x + tv) -tf(q°(r + t)) ~ ~t~ Lip(f)tl~°(r) + tv - ~(r + t)ll 

= ~  Lip(f)ll¢(r) - ¢(r + t)ll 

< Lip(S) Lip(C) _< O(f, ~(r), v)/4 

and an analogical estimate holds for II s(x+~v)-j(~(r+~))I1, we obtain 

D > 30( f ,  ~o(r), v)/4 - 20( f ,  ~o(r), v)/4 = O(f ,  ~o(r), v)/4; 

so O ( f  o ~o, r, 1) _> O(f ,  ~(r), v)/4 is strictly positive as required. I 

It is immediate to see that v~ is the smallest from the classes defined in 
Definition 4. (See Proposition 13 for more information on their relations.) We 
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will therefore prove our improvement of the infinite dimensional Rademacher 

Theorem for this class only. 

THEOREM 12: Let f be a Lipschitz mapping of an open subset G of a separable 
Banach space X to a Banach space Y with the Radon-Nikodym property. Then 

f is G~teaux differentiable at all points of G except those belonging to a set 

A e 4 .  

Proof'. We first show that,  for any v E X \{0} ,  the set 

A = {x e X : f ' (x ,  v) does not exist} 

belongs to 4(v) .  To this end, we define Ak = {x : O( f , x , v )  > 1/k} and 

use Lemma l l ( i )  to reduce the proof to showing that  Ak e A(v, 1/4kLip(f)) .  

By Lemma ll( i i) ,  Ak are Borel sets. If ~g: R --+ X is such that  the function 

t --+ ~ ( t ) - t vn  has Lipschitz constant at most 1/4k Lip(f) ,  then by Lemma l l ( iv)  

the function f o ~o is non-differentiable at any t for which ~g(t) E Ak. Hence 

{t C R : ~g(t) C Ak} is a subset of the set of points at which f o ~ is not 

differentiable; since f o ~g is Lipschitz and Y has the Radon-Nikodym property, 

we infer that this set has measure zero as required for showing that  A E 4(v) .  

If h: X --+ ]R is Lipschitz, then the above proof (and the fact that  R has 

the Radon-Nikodym property) gives that {x C X : h~(x, v) does not exist} also 

belongs to 4(v) .  Consequently, for any complete sequence (Vn) in X, Theorem 10 

implies that the set N of points of G£teaux non-differentiability of f can be 
oo oo N. written as a union N = [-J,~=l [-Jk=l n,k, where Nn,k C 4(v~).  By definition of 

4(v) ,  N~ = Uk~°__m Nn,k belongs to 4(vn). Since N = Un°°_ 1N,~, this proves the 

statement. | 

Finally, we observe some relations between the classes from Definition 4. 

Together with the previous Theorem, these results show that  the infinite di- 

mensional Rademacher Theorem holds for each of the classes C, C*, C, A, ,4* and 

4 .  In addition, they show that these results for the classes C*, ,4* and 4 present 

different genuine improvements on Aronszajn's Theorem (which covers the case 

of ,4). Some questions concerning C are left open: we do not know whether 

C ,4* or C = 4 .  Another open question is if all six classes coincide in finite 

dimensional spaces; this is clearly so if dim(X) = 1 and by a recent result of the 

first named author they coincide also if dim(X) = 2. 

PROPOSITION 13: Let X be a separable Banach space. Then C D ,4 D C* D 

,4* D 4 and C* D C D 4,  and, if dim(X) = oo, these inclusions, with the possible 

exception of the last one, are proper. Moreover, ,4* \ C # O. 



20 D. PREISS AND L. ZAJI(JEK Isr. J. Math. 

Proof.'. With the exception of ,4 D C*, all the above inclusions follow directly 

from the definition. To prove that  C* C ,4, it is clearly sufficient to show that  

,4* (v, e) C ,4 for each 0 ¢ v • X and E > 0. Let B • ,4* (v, e) and a complete 

sequence (vn) be given. Let u = Y~-,~--1 a,~vn be such that  Ilu - vii < E. So 

B • ,4(u), which by a result of [A] (see also [BL, Proposition 6.29]) implies that  

it can be written as a countable union of sets from ,4(v,~). 

To construct the examples, let I = {x • ~ : 1 _~ xk <_ 2}. We equip I with 

the topology of pointwise convergence (so it is a compact metrizable space; in 

fact it is the Hilbert cube) and with the measure # defined as the product of 

countably many copies of the Lebesgue measure on [1, 2]. 

Suppose that  d im(X) -- c~, u0, u l , . . .  • X and u~ • X* are such that  u~(uk) = 
1 and u;(ua) = 0 if k < j .  We will also require that  uk or u2a are dense in X (in 

the last example we will require that  they are dense in a certain open subset of 

X).  Such uk, u~ may be easily constructed by induction. We also define c0 = 1 

and choose recursively ca > 0 so that  

(4) ck(lu;(uk)I + Ilukll + 1) < 2J-k-lCj for 0 _< j < k. 

Using (4) for j -- 0, we see that  callukll 4_ 2 -a and we infer that  the formula 
OO F(t )  --- ~ k = 0  cata+lUk defines a linear mapping o f / ~  to X.  We show that  it is in- 

jective. Indeed, i f t  E too, t ¢ 0 and F(t) = 0, we choose j so that  Itj+ll > Iltll~/2 
and infer from u~(F(t)) = 0 that  cjtj+l + Y~,kcc=j+l cktk+lU~(Ua) ---- 0. But this 

and (4) give a contradiction by cjlltlloo/2 < cjltj+l I <<_ IltlIoo E~°=j+I cklu~(uk)l < 
cjlIGo/2. 

Since ~ k  ca]lukll < oo, the series defining F converges uniformly on I ,  and so 

the restriction of F to I is continuous. Hence F(I)  is a compact  convex subset of 

X which belongs to C (since for every compact subset C of X there is 0 ¢ v E X 

such that  C meets every line in direction v in at most one point) but not to 

A provided that  ua are complete (since #{t e I : F(t) e B} =- 0 whenever 

B E `4(uk) for some k). Our examples will be obtained by using some of the 

directions uk to make this well known example slightly non-linear. 

For the example of a set from `4* \ C we just require that  Uk be dense in X.  

Let 

+ cax u  F FI (x )=  2-,  k xk)  u° . . . .  
k = l  " k = l  

Using (4) for j -- 0, we obtain that  F1 is well-defined for x C loo. I t  is easy to 

see that  the restriction of F1 to I is continuous and thus FI(I) is a compact  set. 
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Note tha t ,  if x, y E I and 0 < t < 1 are such t ha t  x # y and 

t f l ( x )  + (1 - t ) f l ( y )  ~ F~(I) ,  

then, since F is a linear injection of /oo  to X ,  

tFl(x)  + (1 - t)Fl(y) = F~(tx + (1 - t)y) 

and consequently 

o~ oo oo 
2 2 E c~(txk + (1 -- t)yk) 2 = t E c2kx2 + (1 -- t) E ckYk" 

k--1  k = l  k----1 

But  this is impossible since the function z 2 is s t r ic t ly  convex on ~,  so 

c2k(txk + (1 -- t)yk) 2 <_ tc~x2k + (1 -- t)c2y~ for each k 

and, since x # y, there exists k, for which the inequali ty is strict.  We conclude 

tha t  each line meets  FI(I) in no more  than  two points,  hence FI(I) E A*. 
OO OO B Suppose now tha t  F1 ( I )  E C, hence F I ( I )  ~J,~=l U m = l  n,m, where B,,,m E 

A(vn,en,m). We show tha t  #(F~I(Bn,,~)) = 0 for each n,m.  For any given 

m , n  we find j such t ha t  cjlluoll < e~,m/8 and lluj - vnH < en,m/2.  Let  ej 

be the j - t h  m e m b e r  of the canonical basis of loo. For any x E I the mapp ing  

~ :  t -+ Fl(x  + tej) /cj  is Lipschitz on [1 - x j ,  2 - xj] and satisfies I t ~ ( t )  - v,~ II = 

112cj(xj + t)uo + uj - vnll < ~n,,~, hence the set {t : x + tej C F11(Bn,m)} = 
{ t :  ~z( t )  C Bn,m} is Lebesgue null, and Fubini theorem gives #(F~l(Bn,m)) = 0 
as claimed. But  this contradicts  I -- [.J,~=~°° [-Jm=~°° F~(Bn ,m) ,  and we infer tha t  

For the example  of a set f rom ,A \ C* we require tha t  u2k be dense in X .  Define 

oo oo 

k = l  k = l  

= F ( 0 ,  ~1xl, xl ,  ~ 2 X l X 2 ,  X2 ,  ~3XlX2X3,  X3 , .  . .), 

where 0 < ~k < 1/k! are such tha t  lim¢_~o~ ~k~__j 2k~ke~k_~llu2k_~ll/e2~ = o. 
Note tha t ,  if x, y E I are such tha t  x # y and tF2(x) + (1 - t)F2(y) E F2( I )  

for infinitely m a n y  real t, then the fact tha t  F is a linear injection of ~ to X 

implies tha t ,  for each k, 

(tx  + (1 - + (1 - t)y ) = + (1 - t)y ..-yk 

for infinitely m a n y  t, and so for all t, since bo th  sides are polynomials  in t. For y 

differing f rom x in more  than  one coordinate  the polynomia l  on the left has, for 
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sufficiently large k, degree greater that one, so the two sides are not equal. (This 

is why we defined I using the intervals [1, 2].) Hence our x and y may differ in 

one coordinate only. Conversely, for any x E I,  the points F2(y), where y E I 

differs from x in j - th  coordinate only form a segment on the line F2(x) +Rwj  (x), 

where wj (x) = Y~k°°=j ~ k X l  " " " X j _ i X j T I  " " " X k C 2 k _ l U 2 k _  1 -}- C 2 j U 2 j .  

The above analysis shows that the set of lines which contain any fixed point 

F2(x), x E I,  and meet the set F2(I) in an infinite set is countable. (In fact, the 

union of these lines is covered by the lines F2(x) q-Rwj (x) , j  = 1, 2 , . . . . )  Hence 

F2(I) meets every two dimensional subspace of X in a set of two dimensional 

Lebesgue measure zero which by [A] (see also [BL, Proposition 6.29]) implies that 

F2(I) e A. 
Suppose now that F2(I) • C*, hence F2(I) = [.Jn~=l ~J~m=l Bn,,~, where S,~,m • 

~4*(v,~,e,~,m). We show that #(F21(B, ,m))  = 0 for each n,m.  For any given 

m, n we find j such that 

o o  

 -- 2k, kCuk-lllu2k-lll < cej¢,,,m/2 and Iluu  -v, ll < 
k=j 

For any x • I we have 

o o  

k=j 

So Ilwj(x)/c2j - v n l l  < Sn,m, which shows that the line F2(x) + lRwj(x) meets 

Bn, m in a Lebesgue null set. Hence the set 

{ t :  x + tej • F2-1(B~,,~)} = {t :  x + twj(x) • B,~,m} 

is Lebesgue null, and Fubini theorem gives #(F~I(B,~,,~)) = O. But this 

contradicts I = [Jn~=l ~J~m=l F21(Bn,m), and we infer that  F2(I) • C*. 

For our last example, of a set from C* \ ,4*, we choose a closed convex cone 

K C X with nonempty interior for which X \ ( K  t2 ( - K ) )  ¢ 0. We require 

that uk • K and that u2k be dense in K and define F3: I --+ X by F3(x) = 

~-~.kC~=l C2k-l{kxlx2"" XkU2k-1 + ~-~.k~=l C2kXkU2k, where not only the formula but 

also the {k are as in the previous example. The arguments of the previous example 

together with the observation that wj (x) • K for each j and x • I then show 

that  F3(I) is null on every line in direction of any vector v not belonging to 

g U ( - g ) .  So F3(I) • .a*(v) for any v not belonging to K t0 ( - K ) ;  hence 

F3(I) • C*. Moreover, the final argument of the previous example shows that  

F3(I) cannot be written as [.J,~--1 B~, where B,~ • A*(vn) and v,  • K.  Since 
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there are complete sequences vn consisting of elements of K ,  this shows that  

F3(I)  ¢ .A*. II 

5. W h i c h  s e t s  h a v e  t o  b e  e x c e p t i o n a l ?  

The above results contribute towards a general problem of finding a geometric 

description of the (Borel) a - i dea l / : (X)  of subsets of a separable Banach space 

X generated by the sets of G~teaux non-differentiability of Lipschitz mappings 

of X into spaces with the Radon Nikodym property. The current results con- 

cerning this question seem to be rather  weak. I t  is not even known if the a-ideal 

£R(X)  generated by sets of Ggteaux non-differentiability of real-valued Lipschitz 

functions on X coincides with £(X). Moreover, if X is finite dimensional and 

dim(X) _> 3, it is not known if £ ( X )  coincides with Lebesgue null sets. This 

is the case if d im(X) < 2; the case when dim(X) = 1 is classical and the case 

dim(X) = 2 follows from a recent result of the first named author that  for every 

Lebesgue null set M C R 2 there is a Lipschitz mapping g: ]R 2 --+ R 2 which is non- 

differentiable at all points of M. Interestingly enough, this implies that  as long 

as dim(X) _> 2, there is a set N E £R(X) for which one cannot find a real-valued 

Lipschitz function Ggteaux non-differentiable at all points of N.  To see this, 

let 7r be a continuous linear projection on a two dimensional subspace V of X,  

~: ~2 -+ X a continuous linear mapping with a dense image and M C V a G~ set 

of Lebesgue measure zero containing all lines passing through two distinct points 

with rational coordinates (in some fixed basis for V). We define N -- r - l ( M ) .  

Note that  n - l ( N )  = ( r  o n ) - l ( M )  and so, since r o n is an open mapping, for 

every u, v E t2 and ~ > 0 there are u' ,  v '  E ~2 such that  Ilu - u']l + IIv - v'll < 

and the line segment [u',v'] lies in n-l(N). So, by a result of [Pr], every Lip- 

schitz real-valued function o n / 2  is Fr6chet differentiable at a point of n-l(N). 
Whenever f :  X --+ • is Lipschitz, we use this for f o r  to find a point y E n-l(N) 
at which it is Fr6chet differentiable. It  is now easy to verify that  f is G~teaux 

differentiable at x = n(y) E N; so N is not contained in the set of points of 

non-differentiability of a single Lipschitz real-valued function. However, as was 

mentioned above, there is a Lipschitz mapping g: V --+ ]R 2 which is Lipschitz and 

non-differentiable at the points of M. Hence g o r is G£teaux non-differentiable 

at all points of N,  so N E L:R(X). 

From the observations on distance functions made before the s ta tement  of 

Theorem 1 it immediately follows that  every a-directionally porous set belongs 

to L:~. In fact the following stronger observation due to Bernd Kirchheim holds. 

(We note in passing that  the statement holds also for a-porous sets and Fr6chet 
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derivative; for this the argument of [PT] together with the decomposition of the 

sum from the end of the following proof is sufficient. See [HMWZ].) 

PROPOSITION 14: I f  X is a separable Banach space and A C X is a-directionally 
porous, then there is a real-valued Lipschitz function f on X which is G~teaux 
non-differentiable at any point of  A. 

Proo~ We first note that for every set S C X there is a function h: X --+ [0, oc) 

such that Lip(h) _< 4, min(dist(x,S), 1) < h(x) <_ 4min(dist(x,S),  1) for all 

x C X, and h is G~teaux differentiable at every point of X \ S. This may be 

seen as follows: Write 

oo 

d i s t ( x , S ) =  E gk(X), 
k = - - o o  

where gk(x) = min(2 k, max(dist(x, S) - 2 k, 0)) 

and define hk : gk * #k, where #k is a non-degenerated cube measure (cf. [BL, 
p. 142]) with support in B(0, 2k-2). Since g~ is clearly Lipschitz (with Lip(gk) _< 

1), it is G£teaux differentiable at #z-almost all points of X (cf. [BL, 6.25, 6.27, 

6.42]) and therefore Lebesgue's dominated convergence theorem easily gives (as 

in [BL, 6.43]) that  h~k(x, v) : (g~k(', V)* #k)(x) for every x, v e X and therefore 

hk is an everywhere G~teaux differentiable function. 

It is easy to verify that  0 _< hk _< 2 k, Lip(hk) <_ 1, fhk -gkl  <_ 2k-2 and hk(x) = 
gk(x) unless 2 k --2 k-2 < dist(x,S) < 2k+1+ 2 k-2. Letting h = 2)-~.°k=_~hk, 

0 k we thus have h(x) <_ 2 ~k=_oo2 = 4, h(x) ---- 0 i f x  e S, h(x) >_ 2h0(x) > 
2g0(x) - 2  -1 _> 1 if dist(x, S) >_ 2, and, i fk  < O and 2 k < dist(x, S) < 2 k+l, then 

and 

k + l  

h(x) < 2 E (gj(x) + 2 j-2) = 2dist(x,S) + 2 k+l _< 4dist(x,S) 
j ~ - ( x )  

k 

h(x) >_ 2 E (gi(x) - 2J-2) = 2 dist(x, S) - 2 k _> dist(x, S). 

Moreover, since {Ih~k(x)l{ _ 1 and h~k(x) = 0 for all but two values of k (those for 
which 2 k - 2 k-2 < dist(x, S) < 2 k+l + 2k-2), we have that  h is G~teaux differ- 

entiable at every point of X \ S  and Hh'(x)ll < 4; together with the inequality 

0 <_ h(x) _< 4 dist(x, S) this shows that Lip(h) _< 4. 

Suppose now that  A is a a-directionally porous subset of X and write A = 

Un An, where An is directionally porous. For each n use the above to find a 

function hn: X -~ [O, c~) such that Lip(hn) _< 4, min(dist(x, An), 1) < hn(x) <_ 
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4min(dist(x,  An), 1) for all x E X,  and hn is Ggteaux differentiable at every 
- -  O O  

point of X \ An. Let fn = 2-"h,~ and f = ~-~,~=1 fn. Clearly, f is Lipschitz on 

X.  If  x E A, we write f = fm + ~-]~' f,* + ~-~" f~, where m is such that  x E Am, 

the first sum extends over those n # m for which fn(x)  = 0 and the second sum 

over those n for which f .  (x) > 0. Let v be the direction of porosity of Am at x. 

The definition of porosity gives that  

l imsup(fm(X + tv) + fm(X - tv) - 2fm(X)) / t  > O. 
t "~o 

Since f,~ _> 0, we have ~ ' ( f n ( x + t v ) + f , ~ ( x - t v ) - 2 f n ( x ) ) / t  >_ 0 for every t > 0. 

Finally, the sum ~ ' f , ~  is Ggteaux differentiable at x since all fn involved in it 

are G~teaux differentiable at x and ~ Lip(f,~) < co. Hence 

lira ~-f f ' ( fn(x + tv) + fn(x  - tv) - 2 fn(x ) ) / t  =- 0, 
~'~o ,.---, 

and we conclude that  l imsupt%0(f(x  + tv) + f ( x  - tv) - 2 f ( x ) ) / t  > 0, and so f 

is not G~teaux differentiable at x. I 

For any set N C • of measure zero and any projection ~r of X onto R the set 

~r- l (N) belongs to £; this is obvious by composing a function f :  R -4 R non- 

differentiable at points of N with ~r. A more general version of this argument is 

given in the following statement.  

PROPOSITION 15: Suppose that X ,  Y are separable Banach spaces, N E £(Y)  

and that g: X -4 Y is a Lipschitz mapping. For x E X denote by Ux the set of 

directions of (one sided) differentiability of g. Then the set of those x E g -  1 (N) 

for which the span of  the set {g~+(x,u) : u E Ux} is dense in Y belongs to £.(X). 

Proof" By Theorem 5, there is a a-directionally porous set A C X such that  for 

every x E X \ A the set Ux is a closed linear subspace of X and the mapping 

u -4 g~_ (x, u) is linear on Ux. 

By definition of £ (Y)  we can suppose without any loss of generality that  there 

exists a Lipschitz function f :  Y -4 Z, where Z has the Radon-Nikodym property, 

which is G£teaux non-differentiable at any point of N.  If  x E g - l ( N )  \ A, it is 

easy to see that  f o g is G~teaux non-differentiable at x. Indeed, suppose to the 

contrary that  f o g  is G~teaux differentiable at x and consider a vector u E Ux. An 

easy argument then shows tha t  f t (g(x) ,  g~(x, u)) exists and is equal to ( fog) ' (x ,  u) 

(this can be also deduced from Lemma 11 (iv)). Since (g~+(x,u) : u E Ux} is a 

linear dense subspace of Y, we easily deduce (cf. [BL, Lemma 6.40]) that  f is 

G£teaux differentiable at x, which is a contradiction. Hence g - l ( N )  \ A belongs 
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to £ (X) ;  since A belongs to £, (X)  by Proposition 14, this finishes the proof. 
| 
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